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Abstract

Experimental evidence of observing a rather unusual spin-locking spin echo (SLSE) effect in the fields of two multi-pulse
sequences (u0)x � (s � ux � 2s � ux � 2s � u�x � 2s � u�x � s)n and (u0)x � (s � ux � 2s � uy � s)n in 14N nuclear quadrupole
resonance is presented. It was demonstrated that the SLSE effect is observed only in the even pulse intervals of both sequences.
All experiments were carried out at room temperature on a powder sample of NaNO2. A theoretical description of the effect is given.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The discovery of the multi-pulse spin-locking spin–
echo (SLSE) effect in the nuclear quadrupole resonance
(NQR) spectroscopy [1] greatly stimulated the develop-
ment of this area of spectroscopy. The possibility pre-
sented by the SLSE effect to accumulate multiple
signals radically increased the range of compounds that
could be studied as it permitted to detect directly even
the weak signals in nitrogen-containing substances.
The practical significance of this was recently confirmed
by a whole new range of NQR applications [2–6].

Therefore, the great interest of researchers in the
SLSE effect reflected in numerous publications of both
experimental and theoretical nature [1,7–18], is justified.

Until now the SLSE effect in NQR has been observed
experimentally in the fields of only three multi-pulse
sequences:
1090-7807/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.jmr.2005.03.011

* Fax: +61 8 9351 9522.
E-mail address: vassili@qrsciences.com.
MW-4 [1]

ðu0Þy � ðs� ux � sÞn; ð1Þ

MW-2 [7]

ðu0Þx � ðs� ux � 2s� u�x � sÞn ð2Þ
and [18]

ðu0Þp=4 � ðs� ux � 2s� uy � 2s� u�x � 2s� u�y � sÞn:
ð3Þ

(u0 and u are the flip angles of the preparatory pulse
and the other pulses of the sequence, respectively).

In the case of the quadrature detection the signals ob-
served after all the three sequences do not display any
significant differences. This becomes obvious if we con-
sider the equations for the spin system magnetisation
obtained for each of the three sequences [14,18] which
vary only by the value of the resonance offset of the
effective field of the sequence.

This communication presents data on a rather unu-
sual SLSE effect that is generated by sequences of the
following type:

ðu0Þ/ � ðs� ux � 2s� ux � 2s� u�x � 2s� u�x � sÞn
ð4Þ
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The commutation, anticommutation, and trace relations
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and

ðu0Þ/ � ðs� ux � 2s� uy � sÞn; ð5Þ

where / is the preparatory pulse phase.
The peculiarity of the effect consists in its being ob-

served only in the even pulse intervals of each of the se-
quences and whatever the phase of the preparatory pulse
/ is set, it is never observed in the odd intervals.

A theoretical analysis given in the paper confirms that
the focusing properties of the spin-system with homonu-
clear dipole interactions can only be observed in the
even pulse intervals of sequences (4) and (5). The analy-
sis was carried out on the basis of a two-particle model.

All experimental data presented in this communication
was obtained for powder NaNO2 at room temperature.
¼ 3ðKE þ K3 � K3Þ,
Kp
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Here, a, b, c = x,y,z, and K denotes any operators of the set; these
relations hold also after cyclic permutations of p, q, r, and/or a, b, c.
2. Theory

2.1. Preliminaries

To display the principal peculiarities of the formation
of the echo signal to sequences (4) and (5) we will use a
two-particle model and a detailed formalism of two-par-
ticle operators (TO) [19]. The relations between TO and
ordinary one-particle operators of a fictitious spin-1/2
are presented in Tables 1–3.
Table 1
Definitions of two-particle operators

Kp
1 ¼ Ip;eIp;1 þ Ip;1Ip;e, K

p
2 ¼ Ip;2Ip;3 þ Ip;3Ip;2

Kp
3 ¼ Ip;3Ip;3 � Ip;2Ip;2, K

q
1 ¼ Ip;eIp;2 þ Ip;2Ip;e,

Kq
2 ¼ Ip;3Ip;1 þ Ip;1Ip;3, K

q
3 ¼ Ip;1Ip;1 � Ip;3Ip;3,

Kr
1 ¼ Ip;eIp;3 þ Ip;3Ip;e, Kr

2 ¼ Ip;1Ip;2 þ Ip;2Ip;1,

Kr
3 ¼ Ip;2Ip;2 � Ip;1Ip;1, Kp

e ¼ Ip;1Ip;1 þ Ip;eIp;e,

Kq
e ¼ Ip;2Ip;2 þ Ip;eIp;e, Kr

e ¼ Ip;3Ip;3 þ Ip;eIp;e,

KE = Ip,1Ip,1 + Ip,2Ip,2 + Ip,3I3 + 3Ip,eIp,e,

L1 ¼ 1
2½ðIE � 2Ip;eÞIp;1 þ Ip;1ðIE � 2Ip;eÞ þ Iq;1Ir;2 þ Ir;1Iq;2
þ Iq;2Ir;1 þ Ir;2Iq;1�,

L2 ¼ 1
2½ðIE � 2Ip;eÞIp;2 þ Ip;2ðIE � 2Ip;eÞ þ Iq;1Ir;1 þ Ir;1Iq;1
� Iq;2Ir;2 � Ir;2Iq;2�,

L3 ¼ 1
2½ðIE � 2Ip;eÞIp;3 þ Ip;3ðIE � 2Ip;eÞ � Iq;1Iq;1 � Iq;2Iq;2
þ Ir;1Ir;1 þ Ir;2Ir;2�,

Le ¼ 1
2ðIq;1Iq;1 þ Iq;2Iq;2 þ Ir;1Ir;1 þ Ir;2Ir;2Þ � 2Ip;2Ip;1
þ 1

2ðIEIp;e þ Ip;eIEÞ,
M1 ¼ 1

2½ðIE � 2Ip;eÞIp;1 þ Ip;1ðIE � 2Ip;eÞ � Iq;1Ir;2 � Ir;1Iq;2
� Iq;2Ir;1 � Ir;2Iq;1�,

M2 ¼ 1
2½ðIE � 2Ip;eÞIp;2 þ Ip;2ðIE � 2Ip;eÞ � Iq;1Ir;1 � Ir;1Iq;1
þ Iq;2Ir;2 þ Ir;2Iq;2�,

M3 ¼ 1
2½ðIE � 2Ip;eÞIp;3 þ Ip;3ðIE � 2Ip;eÞ þ Iq;1Iq;1 þ Iq;2Iq;2
� Ir;1Ir;1 � Ir;2Ir;2�,

Me ¼ �1
2ðIq;1Iq;1 þ Iq;2Iq;2 þ Ir;1Ir;1 þ Ir;2Ir;2Þ � 2Ip;2Ip;e

þ 1
2ðIEIp;e þ Ip;eIEÞ,

N1 = Ip,eIp,e, N2 = Iq,1Iq,1 + Iq,2Iq,2 + Ir,1Ir,1 + Ir,2Ir,2 = Le �Me,

N3 ¼ 1
2½ðIq;3 � Ip;3ÞIE þ IEðIq;3 � Ip;3Þ� ¼ � 2

3E þ ðIEIp;e þ Ip;eIEÞ
¼ � 2

3E þ Le þMe þ 4N1,

E = IEIE, Ip;e ¼ 2I2p;i

Table 3
The relations among two-particle operators

[K,L] = [K,L]+ = [K,M] = [K,M]+ = [L,M] = [L,M]+ = 0,

[N,K] = [N,L] = [N,M] = [N1,N2] = [N2,N3] = 0,

Tr(KL) = Tr(KM) = Tr(LM) = 0,

[La,Lb] = iLc, [La,Lb]
+ = 0, [La,Lb]

+ = [Le,Le]
+ = L, [La,Le] = La,

Tr(La) = 0, Tr(Le) = 1, Tr(La,Lb) = 0, Tr½ðLaÞ2� ¼ 1
2,

Here, a,b,c = x,y,z or cyclic permutations; K, L, M or N denote any
operator of the K, L, M or N sets, respectively.
Similarly to [19] we use the following system of nota-
tions. The place of the operator in the product of two
one-particle fictitious spin-1/2 operators corresponds
to the number of the spin to which this operator refers.
Thus, if we are considering a system consisting of two
spins 1 and 2, than for example operator Ip,1 for spin
1 can be presented as I ð1Þp;1 ¼ I ð1Þp;1I

ð2Þ
E ¼ Ip;1IE (IE is a unit

operator for spin 2).
Further on we will also use the ordinary notation of

operators of a fictitious spin-1/2 for designating the
sum of the corresponding one-particle operators:

Ip;1 ¼I ð1Þp;1 þ I ð2Þp;1 ¼ Ip;1IE þ IEIp;1 ¼ 2Kp
1 þ L1 þM1;

Ip;2 ¼I ð1Þp;2 þ I ð2Þp;2 ¼ Ip;2IE þ IEIp;2 ¼ 2Kq
1 þ L2 þM2;

Ip;3 ¼I ð1Þp;3 þ I ð2Þp;3 ¼ Ip;3IE þ IEIp;3 ¼ 2Kr
1 þ L3 þM3: ð6Þ

The total quadrupoleHamiltonian of the two-spin sys-
tem in terms of two-particle operators looks as follows:
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HQ ¼ H ð1Þ
Q þ H ð2Þ

Q

¼ xpIp;3 þ 1
3
ðxq � xrÞðIq;3 � Ir;3Þ

¼ xpð2Kr
1 þ L3 þM3Þ þ ðxq � xrÞN 3: ð7Þ

There with,

xp ¼
e2qQ
4

ðgþ 3Þ; xq ¼
e2qQ
4

ðg� 3Þ;

xr ¼ � e2qQ
2

g;

xp = x+, xq = �x�, xr = �x0; x+, x�, x0 are three
resonance frequencies of the nitrogen nucleus.

As demonstrated in papers [7,11], heteronuclear di-
pole interactions do not influence the behaviour of
the spin system in multi-pulse fields and can be left
out of this consideration. Therefore, our further analy-
sis will be undertaken on the basis of the solution of
Liouville equation for the density matrix q, which be-
sides the quadrupole Hamiltonian includes the Hamil-
tonian of the interaction of the spins with a RF field
Hrf, the Hamiltonian of the homonuclear interactions
Hd, and that of inhomogeneous broadening, or reso-
nance offset, HD:

dq
dt

¼ �i½HQ þ H rfðtÞ þ Hd þ HD; q�: ð8Þ

Let us assume that the RF carrier frequency of the
pulses corresponds to the resonance frequency xp. Then
the RF Hamiltonian is

H rfðtÞ ¼ H ð1Þ
rf ðtÞ þ H ð2Þ

rf ðtÞ
¼ �2c � H 1½cos#LIp;1 þ sin#L cosuLIq;1
þ sin#L sinuLIr;1� cosðxpt þ /Þ

¼ �2 cosðxpt þ /Þ
X

m¼p;q;r

x1;mIm;1:

Here, x1,p = cH1cos#L, x1,q = cH1sin #LcosuL, x1,r =
cH1 sin#L sinuL, c is the gyromagnetic ratio of the nu-
cleus; H1 is the amplitude of the RF field; / is the initial
phase of the RF field; hL and uL represent the orienta-
tion of the RF field in the principal axis of the electric
field gradient tensor.

In the interaction representation ð~qðtÞ ¼ expðitHQÞ
qðtÞ expð�itHQÞÞ the part of the RF Hamiltonian inde-
pendent of time looks as follows:

~H rfðtÞ ¼ ~H
ð1Þ
rf ðtÞ þ ~H

ð2Þ
rf ðtÞ

¼ �x1Ip;1 cos/þ x1Ip;2 sin/

¼ �x1ð2Kp
1 þ L1 þM1Þ cos/

þ x1ð2Kq
1 þ L2 þM2Þ sin/ ðx1 � x1;pÞ: ð9Þ

The secular part of the dipolar Hamiltonian with re-
spect to HQ according to [19] can be expressed in one of
the following three forms:
~Hd ¼ XpðKE þ Kp
e � Kp

3 � 4N 1 � N 2Þ
þ ðXq � XrÞðM3 � L3Þ; ð10aÞ

¼ XpðKE þ Kq
e þ Kq

3 � 4N 1 � N 2Þ
þ ðXq � XrÞðM3 � L3Þ; ð10bÞ

¼ XpðKE þ 2Kr
e � 4N 1 � N 2Þ

þ ðXq � XrÞðM3 � L3Þ: ð10cÞ

According to [11]

Xp ¼
c2

r3ij
ð1� 3cos2wpÞ;

wp is the angle, constituting internuclear vector with
principal axis p, along which resonance transition xp is
excited.

The inhomogeneous line broadening is mostly deter-
mined by the deviation of the resonance frequency of the
nuclei from the average value due to the scatter of the
quadrupole interaction constants inside the sample.
Let us introduce offsets Dxi (i = p,q, r), corresponding
to the average deviation from the resonant frequencies
of the sample xi. It is obvious that the values of Dxi

are limited by the half-width of the corresponding reso-
nance lines. The Hamiltonian of inhomogeneous broad-
ening HD in presenting the interaction can be written
down as [19]:

~HD ¼ DxpIp;3 þ 1
3
ðDxq � DxrÞðIq;3 � Ir;3Þ

¼ Dxpð2Kr
1 þ L3 þM3Þ þ ðDxq � DxrÞN 3

¼ Dð2Kr
1 þ L3 þM3Þ þ ðDxq � DxrÞN 3; D � Dxp:

ð11Þ

Components defined by operators KE and N in
equations (10) and (11), do not have any influence
on the evolution of the spin system at least at times
shorter than the spin-lattice relaxation time T1, and
therefore can be left out without detriment to this
consideration.

Under condition k ~H rfk � k ~Hdk, k ~HDk the equation
for the density matrix ~qðtÞ in the interaction representa-
tion is

d~q
dt

¼ �i½ ~H rf ; ~q� ð12Þ

during the period of the RF field existence, and

d~q
dt

¼ �i½ ~HT ; ~q� ð13Þ

between pulses.
In (13) notation

~HT ¼ ~Hd þ ~HD ð14Þ
is introduced.
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Further on, we will omit the tilde sign.
2.2. Two pulse sequence (u0)y � s � (u)x � (t � s)

Let us consider the effect of two-pulse sequence
(u0)y � s � (u)x � (t � s) on the spin system on condi-
tion that the carrier frequency of the pulses coincides
with the average value of the resonance frequency xp

(further on we will call it the exact resonance condition).
Therewith, we will assume that the resonance frequency
of the two spin system under consideration differs from
the value of xp by the value of D. The purpose of this
consideration is determining the conditions for the solid
echo formation.

The initial equilibrium density matrix equals

qeq ¼ 1
9
E � a0xpIp;3
� �

¼ 1
9
E � a0xpð2Kr

1 þ L3 þM3Þ
� �

: ð15Þ

a0 is the inverse spin temperature corresponding to the
equilibrium state.

The unit operator E obviously can be excluded from
the consideration.

After the impact of sequence u0y � s � ux � (t � s)
the density matrix of the spin system equals

q ¼ UqeqU
þ; ð16Þ

U¼expð�iHT �ðt�sÞÞexpðiuIp;1Þ
�expð�iHT �sÞexpðiu0Ip;2Þ

¼expð�iðXpðt�sÞðKEþKp
e�Kp

3Þþ2DKr
1ÞÞ

�expði2u0K
p
1Þ�expð�iðXpsðKEþKp

e�Kp
3Þþ2DKr

1ÞÞ
�expði2uKq

1Þ�expð�iðXq�XrÞðt�sÞM3ÞexpðiuM1Þ
�expð�iðXq�XrÞsM3Þexpðiu0M2Þ
�expðiðXq�XrÞðt�sÞL3ÞexpðiuL1Þ
�expðiðXq�XrÞsL3Þexpðiu0L2Þ: ð17Þ

In expression (17)u0 = uM0 coshL,u = uMcoshL,uM0 =
cH1tw0 anduM = cH1tw, tw0 and tw are the durations of the
first and second pulse, respectively.

The in-phase and quadrature components of the ob-
served signals are determined by respective equations
S1 ¼ TrðqIp;1 cos hLÞ ¼ Trðqð2Kp
1 þM1 þ L1ÞÞ cos hL;

S2 ¼ TrðqIp;2 cos hLÞ
¼ Trðqð2Kq

1 þM2 þ L2ÞÞ cos hL: ð18Þ
It is only the part of the density matrix (17) that contains
operators Kp

1, K
q
1,Mi and Li (i = 1,2) that determines the

observed signals.
The part of the density matrix corresponding to the

observed echo equals:
qecho ¼� 1
18
a0xp½Kp

1 cosDðt� 2sÞfðcos2u� 1Þ
� cosXpðt� 2sÞ� cosu � sinXpðt� 2sÞg
þKq

1 sinDðt� 2sÞfðcos2u� 1ÞcosXpðt� 2sÞ
� cosu � sinXpðt� 2sÞg�þM1ðcosu� 1Þ
� cosððDþXq�XrÞðt� 2sÞÞ
þM2ðcosu� 1Þ sinððDþXq�XrÞðt� 2sÞÞ
þL1ðcosu� 1ÞcosððD�XqþXrÞðt� 2sÞÞ
þL2ðcosu� 1Þ sinððD�Xq þXrÞðt� 2sÞÞ� sinu0:

ð19Þ

According to equations (18) the quadrature and the
in-phase components of the echo signal equal

S1echo ¼ � 1
18
a0xp½ðcos 2u� 1Þ cosDðt � 2sÞ

� cosXpðt � 2sÞ � cosu cosDðt � 2sÞ
� sinXpðt � 2sÞ þ ðcosu� 1Þ cosðDðt � 2sÞÞ
� cosððXq � XrÞðt � 2sÞÞ� sinu0 cos hL;

S2echo ¼ � 1
18
a0xp½ðcos 2u� 1Þ sinDðt � 2s

� cosXpðt � 2sÞ � cosu sinDðt � 2sÞ
� sinXpðt � 2sÞ� þ ðcosu� 1Þ sinðDðt � 2sÞÞ
� cosððXq � XrÞðt � 2sÞÞ� sinu0 cos hL: ð20Þ

It follows from Eq. (20) that the formation of the solid
echo signal is connected with two phenomena: refocus-
ing of the offset effects induced by the distribution of
the quadrupolar interaction constants, and the refocus-
ing of the dipole interactions.

When t = 2s, only one component is non-zero.
Averaged for powder magnetization ÆSæ equals [10]

hSi ¼ 1

2

Z p

0

S sin hLdhL: ð21Þ

Induction signal after averaging for powder take the
form of [10]

hS0i ¼ �1
3
a0xp

uM0 cosuM0 � sinuM0

u2
M0

:

Let us assume that uM = uM0 . 0.66p (‘‘effective 90�
pulse’’ for powders). Then at t = 2s

hSechoð2sÞi
hS0i

¼ � a0xp

36hS0i

Z p

0

ðcosðuM cos hLÞ

þ cosð2uM cos hLÞ � 2Þ cos hL sin hL dhL � 0:34:

As it is natural to assume that the nature of echo sig-
nals, both in the case of multi-pulse sequences (1)–(5)
and in the case of the two-pulse sequence considered
above, is the same, to carry out an analysis of sequences
(4) and (5) one should take into account the dipole inter-
actions of like spins as well as the distribution of reso-
nance frequencies inside the sample.
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2.3. Sequence (u0)/ � (s � ux � 2s � ux � 2s � u�x �
2s � u�x�s)n

Let us consider the effect of quadrupolar nuclei of se-
quence (4) on the spin system (u0)/ � (s � ux � 2s
� ux � 2s � u�x � 2s � u�x � s)n under the exact
resonance condition.

For sequence (4) the equation of motion in the inter-
action representation looks as follows:

dq
dt

¼ �i½H rf þ HT ; q�: ð22Þ

For pulse approximation using d-functions, the RF
Hamiltonian for sequence (4) can be presented as

H rf ¼ �u0dðtÞ½cos/ � Ip;1 þ sin/ � Ip;2� þ F ðtÞ � Ip;1;
ð23Þ

pulse function F (t) equals

F ðtÞ ¼ u
Xn�1

k¼0

dðt� ð1þ 8kÞsÞ þ
Xn�1

k¼0

dðt� ð3þ 8kÞsÞ
 !"

�
Xn�1

k¼0

dðt� ð5þ 8kÞsÞ þ
Xn�1

k¼0

dðt� ð7þ 8kÞsÞ
 !#

:

ð24Þ

The initial equilibrium density matrix equals

qeq ¼ �1
9
a0xpIp;3 ¼ �1

9
a0xpð2Kr

1 þ L3 þM3Þ: ð25Þ

As a result of the preparatory pulse (u0)/ at
uM0 = 0.66p action in correspondence with (12) and
(23) the density matrix looks as follows:

q0/ ¼ expðiu0ðIp:1 cos/� Ip:2 sin/ÞÞqeq

� expð�iu0ðIp:1 cos/� Ip:2 sin/ÞÞ
¼ �1

9
a0xpðIp;3 cosu0 � Ip;1 sinu0 sin/

� Ip;2 sinu0 cos/Þ
¼ 1

9
a0xpð�ð2Kr

1 þ L3 þM3Þ cosu0 þ ð2Kp
1 þ L1 þM1Þ

� sinu0 sin/þ ð2Kq
1 þ L2 þM2Þ sinu0 cos/Þ;

ð26Þ
For preparatory pulses (u0)x and (u0)y the initial density
matrix equals, respectively,

q0x ¼ 1
9
a0xpð�Ip;3 cosu0 þ Ip;2 sinu0Þ

¼ 1
9
a0xpð�ð2Kr

1 þ L3 þM3Þ cosu0

þ ð2Kq
1 þ L2 þM2Þ sinu0Þ;

q0y ¼ 1
9
a0xpð�Ip;3 cosu0 þ Ip;1 sinu0Þ

¼ 1
9
a0xpð�ð2Kr

1 þ L3 þM3Þ cosu0

þ ð2Kp
1 þ L1 þM1Þ sinu0Þ: ð27Þ

The effect of each pulse of sequence (4) is described by
the rotation operator in the form of

P j ¼ expð�ð�1ÞjiuIp;1Þ
¼ expð�ð�1Þjiuð2Kp þM1 þ L1ÞÞ; ð28Þ
1
where j is the number of the pulse in a cycle. It is obvious
that P 1 ¼ P 2 ¼ P�1

3 ¼ P�1
4 . As the pulses of the cycle of

sequence (4) fulfil the condition

Y4
j¼1

P j ¼ 1; ð29Þ

we can use the average Hamiltonian theory to analyse
sequence (4).According to [20] average zero-order Ham-
iltonian can be written down as follows:

�H 0 ¼
1

tc

X4
k¼0

�HTksk

¼ 1
4
½HT þ 2P 1HTP�1

1 þ ðP 1Þ2HT ðP�1
1 Þ2�

¼ XpðKE þ Kp
e � 1

4
ðð1þ 2 cos 2uþ cos 4uÞKp

3

þ 2 sin 2uð1þ cos 2uÞKp
2ÞÞ þ D1

2
ðð1þ 2

� cosuþ cos 2uÞKr
1 þ 2 sinuð1

þ cosuÞKq
1Þ þ 1

4
½Dþ ðXq � XrÞ�½ð1þ 2 cosu

þ cos 2uÞM3 þ 2 sinuð1þ cosuÞM2� þ 1
4
½D

� ðXq � XrÞ�½ð1þ 2 cosuþ cos 2uÞL3 þ 2

� sinuð1þ cosuÞL2�: ð30Þ

In equation (30) we used notations

�HTk ¼
Yk
j¼0

P j

 !�1

HT

Yk
j¼0

P j

 !
;

P 0 ¼ 1; s0 ¼ s4 ¼ s; s1 ¼ s2 ¼ s3 ¼ 2s; tc ¼ 8s:

ð31Þ

Let us consider two probable extreme cases: D � Xi

and D � Xi (i = p,q, r).
The first case occurs rather rarely and conforms to

the condition T 2 � T 	
2, the second one is the most fre-

quent and complies with the in equation T 2 � T 	
2.

First let us consider the case of D�Xi.
Omitting all terms proportional to D in expression

(30), we obtain:

�H 0 ¼ XpðKE þ Kp
e � 1

4
ðð1þ 2 cos 2uþ cos 4uÞKp

3

þ 2 sin 2uð1þ cos 2uÞKp
2ÞÞ þ 1

4
ðXq � XrÞ

� ½ð1þ 2 cosuþ cos 2uÞðM3 � L3Þ
� þ2 sinuð1þ cosuÞðM2 � L2Þ�: ð32Þ

Hamiltonian (32) does not contain a single K-operator
that would make an input into the observed signal.
Therefore, K-operators in expression (32) can be ex-
cluded from consideration. The truncated version of
Hamiltonian �H 0 looks as follows:
�H 0 ¼ 1

4
ðXq � XrÞ½ð1þ 2 cosuþ cos 2uÞðM3 � L3Þ
þ 2 sinuð1þ cosuÞðM2 � L2Þ�: ð33Þ

It takes 2 ‚ 3T2 (T2 is the time of spin–spin relaxation)
for the quasi-stationary state to be established in the
spin system, the quasi-stationary state is described by
the density matrix as qqst. When q0 = q0x operator qqst
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can be calculated as a total of projections of the density
matrix q0x on Hamiltonians �H 0 [21]:

�H 0 ¼ �H 01 þ �H 02;

�H 01 ¼ 1
4
ðXq � XrÞ½ð1þ 2 cosuþ cos 2uÞM3

þ 2 sinuð1þ cosuÞM2�;

�H 02 ¼ � 1
4
ðXq � XrÞ½ð1þ 2 cosuþ cos 2uÞL3

þ 2 sinuð1þ cosuÞL2�;

ð �H 01j �H 02Þ ¼ 0:

qqst ¼
X2
i¼1

Trðq0x � �H 0iÞ
Trð �H 0iÞ2

�H 0i ¼
X2
i¼1

axi �H 0i

¼ �1
9
a0xpð1þ 2 cosuþ cos 2uÞ2 cosu0ðM3 þ L3Þ

� 4sin2u � ð1þ cosuÞ2 sinu0ðM2 þ L2Þ=
ðð1þ 2 cosuþ cos 2uÞ2 þ 4sin2u � ð1þ cosuÞ2:Þ

ð34Þ

It is obvious that coefficients axi ¼ Trðq0x � �H0iÞ
Trð �H0iÞ2

coincide with
the values of reverse spin temperatures of thermody-
namic reservoirs determined by �H 0i interactions [21].

Magnetisation in this case has only one component

S ¼ TrðqqstIp;2 cos hLÞ
¼ Trðqqstð2Kq

1 þM2 þ L2ÞÞ cos hL
¼ 1

9
a0xp cos hL

� 4sin2u � ð1þ cosuÞ2 sinu0

ð1þ 2 cosuþ cos 2uÞ2 þ 4sin2u � ð1þ cosuÞ2

¼ 1
9
a0xp cos hL � 4sin2ðuM cos hLÞ
� ð1þ cosðuM cos hLÞÞ2 sinðuM0 cos hLÞ
=ð1þ 2 cosðuM cos hLÞ þ cosð2uM cos hLÞÞ2

þ 4sin2ðuM cos hLÞ � ð1þ cosðuM cos hLÞÞ2: ð35Þ

In accordance with expression (21) averaged for powder
magnetisation ÆSæ at uM0 . 0.66p equals

hSi ¼ 1
9
a0xpIðuMÞ; ð36Þ

where

IðuMÞ ¼
Z p

0

fðsin2ðuM cos hLÞ � ð1þ cosðuM cos hLÞÞ2

� sinð0:66p cos hLÞÞ=ðð1þ 2 cosðuM cos hLÞ
þ cosð2uM cos hLÞÞ2 þ 4sin2ðuM cos hLÞ
� ð1þ cosðuM cos hLÞÞ2Þg � sin 2hLdhL:

Numerical integration shows that function I(uM) reached
its maximum value atuM � 0.65p. At uM = 0.66p the va-
lue of function I(uM) differs from the maximum by less
than 0.1% and equals I(0.66p) � 0.37. Thus, magnetisa-
tion averaged for powder equals
hSi � 0:37

9
a0xp: ð37Þ

The amplitude of magnetisation in powder, created by
preparatory pulse uM0 = 0.66p, equals

hS0ð0:66pÞi ¼ 1
3
a0xp

0:66p � cos 0:66p� sin 0:66p

ð0:66pÞ2

� 0:44

3
a0xp: ð38Þ

From (37) and (38) we obtain the maximum ratio of
the echo signal amplitude to the induction signal in
powder

hSi
hS0i

� 0:28: ð39Þ

Expressions (35)–(38) were obtained for the case
D � Xi, corresponding to similar relaxation times T2

and T 	
2.

Now let us find expressions for a much more frequent
case of magnetization D � Xi, when T 2 � T 	

2.
If in expression (30) we neglect all members 
Xi, we

obtain

�H 0 ¼
D
2
ðð1þ 2 cosuþ cos 2uÞKr

1 þ 2 sinuð1þ cosuÞKq
1Þ

þD
4
½ð1þ 2 cosuþ cos 2uÞðM3 þ L3Þ

þ 2 sinuð1þ cosuÞðM2 þ L2Þ�: ð40Þ

Average Hamiltonian �H 0 can be presented as a total of
three mutually commuting operators �H 0i, which also sat-
isfy the requirement of being mutually orthogonal:

�H 0 ¼
X3
i¼1

�H 0i; �H 01

¼D1
2
ðð1þ 2cosuþ cos2uÞKr

1þ 2sinuð1þ cosuÞKq
1Þ;

�H 02 ¼ 1
4
D½ð1þ2cosuþ cos2uÞM3þ2sinuð1þ cosuÞM2�;

�H 03 ¼ 1
4
D½ð1þ2cosuþ cos2uÞL3þ2sinuð1þ cosuÞL2�;

ð �H 0ij �H 0jÞ ¼ 0; i 6¼ j:

The density matrix assumes the form

qqst ¼
X3
i¼1

Trðq0x � �H 0iÞ
Trð �H 0iÞ2

�H 0i ¼
X3
i¼1

axi �H 0i

¼�1
9
a0xp

ð1þ2cosuþ cos2uÞ2ðKr
1þM3þL3Þ

ð1þ2cosuþ cos2uÞ2þ4sin2u � ð1þ cosuÞ2

� cosu0þ 1
9
a0xp

� 4sin2u � ð1þ cosuÞ2ðKq
1þM2þL2Þ

ð1þ2cosuþ cos2uÞ2þ4sin2u � ð1þ cosuÞ2

� sinu : ð41Þ
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Magnetization has one component and equals

S ¼ TrðqqstIp;2Þ ¼ Trðqqstð2Kq
1 þM2 þ L2ÞÞ

¼ 2
9
a0xp

� 4sin2u � ð1þ cosuÞ2 sinu0

ð1þ 2 cosuþ cos 2uÞ2 þ 4sin2u � ð1þ cosuÞ2
:

ð42Þ
Averaging for powder at uM0 = 0.66p gives

hSi ¼ 2
9
a0xpIðuMÞ: ð43Þ

At uM = 0.66p we obtain the value of ÆMæ close to
maximum

hSi ¼ 0:74

9
a0xp: ð44Þ

The ratio of the echo signal amplitude to the induction
signal observed after the preparatory signal, does not ex-
ceed the value

hSi
hS0i

� 0:56: ð45Þ

If q0 = q0y, then

qqst ¼
X2
i¼1

Trðq0y � �H 0iÞ
Trð �H 0iÞ2

�H 0i ¼
X2
i¼1

ayi �H 0i ¼ 0; ð46Þ

where

ayi ¼
Trðq0y � �H 0iÞ
Trð �H 0iÞ2

: ð47Þ

It follows from expression (46) that the choice of a
preparatory pulse (u0)/ with phase / = y leads to a
complete absence of observed NQR signal at
times P T2.

Expressions (41), (46) describe the density matrix of
the spin system corresponding to the stroboscopic obser-
vation of the NQR signals in the middle of each last
interval of a cycle of sequence (4). Let us obtain the
expressions for the density matrix for the other intervals
of the sequence. We transform the equation of pulse se-
quence (4) as

½ðu0Þ/ � s� ux � s� � ðs� ux � 2s� u�x � 2s� u�x

� 2s� ux � sÞn; ð48aÞ

½ðu0Þ/ � s� ux � 2s� ux � s� � ðs� u�x � 2s� u�x

� 2s� ux � 2s� ux � sÞn; ð48bÞ

½ðu0Þ/� s�ux�2s�ux�2s�u�x� s�
�ðs�u�x�2s�ux�2s�ux�2s�u�x� sÞn: ð48cÞ

In this form, the pulses in square brackets play the pre-
paratory role and their effect corresponds to the initial
matrix of the sequence q0. For all pulse groups in the
round brackets the requirement of cyclic recurrence
holds (29), therefore, these pulse groups can be regarded
as cycles. Formulating the sequences as in ((48a)–(48c))
reflects the method of signal detection corresponding in
each case with the end of the cycle.

Let us determine propagators expressed as

U�x ¼ expð�iHdsÞexpð�iuIp;1Þexpð�iHdsÞ
¼ expð�iHdsÞexpð�iuð2Kp

1 þL1þM1ÞÞexpð�iHdsÞ:
ð49Þ

The initial density matrixes after the impact of se-
quences (48a)–(48c) equal, respectively,

qA
0/ ¼ Uxq0/U

�1
x ; qB

0/ ¼ UxUxq0/U
�1
x U�1

x ;

qC
0/ ¼ U�xUxUxq0/U

�1
x U�1

x U�1
�x :

ð50Þ

In expressions (40) the upper indices A, B, and C corre-
spond to sequences (48a), (48b), and (48c).

One can see that the full propagator of the cycle of
sequence (48a) can be expressed through the average
Hamiltonian of sequence (4):

UA ¼ UxU�xU�xUx ¼ U�1
x ðUxUxU�xU�xÞUx

¼ U�1
x expð�itc �H 0ÞUx ¼ expð�itcðU�1

x
�H 0UxÞÞ: ð51Þ

On the other hand, propagator UA can be presented as

UA ¼ expð�itc �H
A
0 Þ; ð52Þ

where �HA
0 is the average Hamiltonian of sequence (48a).

From expressions (51) and (52) it follows that

�HA
0 ¼ U�1

x
�H 0Ux ¼

X4
i¼1

�HA
0i; ð53Þ

where

�HA
0i ¼ U�1

x
�H 0iUx: ð54Þ

In a similar way, for average Hamiltonians �HB
0 and �HC

0

of sequences (48b) and (48c) we obtain

�HB
0 ¼ U�1

x U�1
x

�H 0UxUx ¼
X4
i¼1

�HB
0i; ð55Þ

�HC
0 ¼ U�1

�xU
�1
x U�1

x
�H 0UxUxU�x ¼

X4
i¼1

�HC
0i; ð56Þ

�HB
0i ¼ U�1

x U�1
x

�H 0iUxUx; ð57Þ

�HC
0i ¼ U�1

�xU
�1
x U�1

x
�H 0iUxUxU�x: ð58Þ

It is obvious that operators �HJ
0i (J = A, B or C) have the

same commutative and orthogonal properties as opera-
tors �H 0i. Therefore, density matrixes of the quasi-sta-
tionary state for sequences (48a)–(48c) can be
presented in a way similar to that in expressions (34)
and (41):
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qA
qst ¼

X4
i¼1

TrðqA
0/ � �H

A
0iÞ

Trð �HA
0iÞ

2
�HA

0i ¼
X4
i¼1

aA/i �H
A
0i; ð59aÞ

qB
qst ¼

X4
i¼1

TrðqB
0/ � �H

B
0iÞ

Trð �HB
0iÞ

2
�HB

0i ¼
X4
i¼1

aB/i �H
B
0i; ð59bÞ

qC
qst ¼

X4
i¼1

TrðqC
0/ � �H

C
0iÞ

Trð �HC
0iÞ

2
�HC

0i ¼
X4
i¼1

aC/i �H
C
0i: ð59cÞ

Equations (49) designate:

aJ/i ¼
TrðqJ

0/ � �HJ
0iÞ

Trð �HJ
0iÞ

2
; J ¼ A;B or C: ð60Þ

Having substituted expressions (50), (54), (57), into (60)
we obtain

aA/i ¼ aB/i ¼ aC/i ¼ a/i ¼
Trðq0/ � �H 0iÞ
Trð �H 0iÞ2

: ð61Þ

The standard procedure of calculating the average zero-
order Hamiltonian [20] for each of the three sequences
(48a)–(48c) results in:

�HA
0i ¼ 1

4
½2HT þ P 1HTP�1

1 þ P�1
1 HTP 1�

¼ XpðKE þ Kp
e � Kp

3
1
2
ð1þ cos 2uÞÞ þ DKr

1ð1
þ cosuÞ þ 1

2
½Dþ ðXq � XrÞ�M3ð1þ cosuÞ

þ 1
2
½D� ðXq � XrÞ�L3ð1þ cosuÞ; ð62aÞ

�HB
0i ¼ 1

4
½HT þ 2P�1

1 HTP 1þðP�1
1 Þ2HT ðP 1Þ2�

¼XpðKE þKp
e � 1

4
ðð1þ 2cos2uþ cos4uÞKp

3

� 2sin2uð1þ cos2uÞKp
2ÞÞ

þD1
2
ðð1þ 2cosuþ cos2uÞKr

1

� 2sinuð1þ cosuÞKq
1Þþ 1

4
½DþðXq�XrÞ�

� ½ð1þ 2cosuþ cos2uÞM3� 2sinuð1þ cosuÞM2�
þ 1

4
½D�ðXq �XrÞ�½ð1þ 2cosuþ cos2uÞL3

� 2sinuð1þ cosuÞL2�; ð62bÞ

�HC
0i ¼ �HA

0i: ð62cÞ
Hamiltonians �HA

0i and �HC
0i do not contain the operators

that have an input in the observed signal. Therefore, at
any preparatory pulses the signals for sequences (48a)
and (62) equal zero.

Expressions for signals observed in the field of se-
quence (48b), can be obtained by a trivial substitution
u fi �u (or uM fi �uM) in expressions (35), (36)
(D � Xi) and (42), (43) (D � Xi), obtained for sequence
(4). As the above expressions are invariant to substitu-
tion u fi �u, they are also suitable for describing sig-
nals in the field of sequence (48b).

It also follows from expressions (30) and (62) that in
case of preparatory pulse (u0)y no signal is observed in
the field of any of the sequences.
Here is a short conclusion from the above theoretical
consideration of sequence (4). When the preparatory
pulse is chosen with the phase / = x, the NQR signal
at times > T2 should only be observed in the even pulse
intervals of the sequence. When the preparatory pulse is
chosen with the phase / = y, the signal equals zero in all
intervals.

2.4. Sequence (u0)/ � (s � ux � 2s � uy � s)2n

Let us consider the case when the carrier frequency of
the pulses of sequence (5) x differs from the resonance
frequency of the sample xp by the value of D0 = xp � x.
The RF Hamiltonian for sequence (5) in the laboratory
coordinate system in this case looks as follows:

H rfðtÞ ¼ � 2Ip;1fu0dðtÞ � cosðxt þ /Þ þ G1ðtÞ cosxt
þ G2ðtÞ sinxtg: ð63Þ

G1ðtÞ ¼ u
X2n�1

k¼0

dðt � ð1þ 4kÞsÞ;

G2ðtÞ ¼ u
X2n�1

k¼0

dðt � ð3þ 4kÞsÞ:
ð64Þ

In the representation of Hamiltonian

H ¼ xIp;3 ð65Þ
the density matrix equation equals

i
dq
dt

¼ ½D0Ip;3 þ H rf þ Hd þ HD; q�;

where

H rf ¼ � u0dðtÞ½cos/ � Ip;1 þ sin/ � Ip;2�
� G1ðtÞ � Ip;1 þ G2ðtÞ � Ip;2: ð66Þ

Operators Ip,i, Hd, and HD are determined by expres-
sions (6), (10) and (14). After a canonical transformation
of equation (66)

qðtÞ ¼ exp �i
p
4
� t
s
� p

4

h i
Ip;3

� �
q00 exp i

p
4
� t
s
� p

4

h i
Ip;3

� �
;

ð67Þ
we obtain

i
dq00

dt
¼ D0 �

p
4s

� �
Ip;3 þ H 00

rf þ Hd þ HD; q
00

h i
; ð68Þ

where

H 00
rf ¼ � u0dðtÞ cos /� p

4

� �
� Ip;1 þ sin /� p

4

� �
� Ip;2

h i
þ F ðtÞ � Ip;1; ð69Þ

pulse function F (t) is determined from equation (24).
Hamiltonians Hd and HD after transformation (67) stay
unchanged.

From the expression of equations (68) and (69) it fol-
lows that with frequency offset D0 ¼ p

4s and the prepara-
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tory pulse phase / ¼ /00 þ p
4
these equations fully coin-

cide in form with equations (22) and (23) and describe
the resonance effect of sequence (u0)/00—(s � ux � 2s
� ux � 2s � u�x � 2s � u�x)n on the spin system. Thus
we can expect that the effect of sequences (4) and (5) is
identical on condition of a p

4s shift in the pulse carrier
frequency when going from one sequence to the other.
3. Experimental results

All experiments were carried out at a temperature of
20 �C on the spectrometer including the ‘‘Apollo’’ con-
sole manufactured by Tecmag, power amplifier Elec-
tronic Navigation Industries A-150 model and
pre-amplifier Miteq AU-2A-0150-BNC and a home-
made probe in the form of a parallel resonance circuit.
The Q-factor of the resonance circuit was 
200.

The powdered compound of NaNO2 was used as a
sample. The mass of the sample was 
80 g. The mea-
surements were taken for line m+ = 4.64 MHz. Relaxa-
Fig. 1. The NQR signals in NaNO2 (line m+ = 4.64 MHz) obtained
with sequence (u0)/ � (s � ux � 2s � ux � 2s � u�x � 2s � u�x � s)n
at (A) / = x and (B) / = y after 100 averages. Sequence parameters:
u � 0.66p, s = 1228 ls, n = 10. The acquisition time is 2048 ls, the
duration of the 90� pulse in powder is 80 ls.
tion parameters at 20 �C for this line are as follows:
T 	

2 ¼ 2:0 ms, T2 = 5.3 ms, T1 = 90 ms [22] (T 	
2 is the time

constant of free induction decay, T2 is the spin–spin
relaxation time, T1 is the spin-lattice relaxation time).

All multi-pulse sequences used in the experiments,
had the following parameters: u � 0.66p (90� pulse in
powder), s = 1228 ls. The acquisition time was
2048 ls. The duration of the 90� pulse in powder was
80 ls.

Figs. 1 and 2 present data obtained upon the irradia-
tion of powdered sodium nitrite NaNO2 by sequences
(4) and (5) at / = x (Figs. 1A and 2A) and / = y (Figs.
1B and 2B). The number of pulses in each sequence is
40.

The echo signals generated by the preparatory pulses
of the sequences (4) and (5) are presented in Figs. 3A
and B. To separate echo components of the NQR sig-
nals corresponding only to the preparatory pulse, the
Fig. 2. The signals obtained upon the irradiation of powdered sodium
nitrite NaNO2 (resonance line m+ = 4.64 MHz) by sequen-
ce(u0)/ � (s � ux � 2s � uy � s)n with n = 20 at / = p/4 and /
= 5p/4 correspondingly. The measurements were made under the
same conditions and with the same sequence parameters as in Fig. 1.



Fig. 3. The echo signals obtained in powdered NaNO2 at line
m+ = 4.64 MHz with sequences (A) (u0)x � (s � ux � 2s � ux � 2s �
u�x � 2s � u�x � s)n � 500 ms � (u0)�x � (s � ux � 2s � ux � 2s �
u�x � 2s � u�x � s)n, and (B) (u0)p/4 � (s � ux � 2s � uy � s)2n �
500 ms � (u0)5p/4 � (s � ux � 2s � uy � s)2n at n = 20 after 100
averages.

Fig. 4. The results of measuring the dependence of the echo signal
intensity variations on the frequency offset for sequences (A)
(u0)x � (s � ux � 2s � ux � 2s � u�x � 2s � u�x � s)n and (B)
(u0)p/4 � (s � ux � 2s � uy � s)n. The conditions of the measurements
and parameters of the sequences are the same as in Fig. 1.
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phases of the preparatory pulse and of the detector ref-
erence voltage were reversed at each repetition of the
multipulse sequence. In this scheme, all free induction
and echo signal components generated by sequence
pulses other than the preparatory one are subtracted,
while the echo signals related to the preparatory pulse
are summed. The sequence repetition time was 500 ms,
the number of repetitions (averages) was 100.

Figs. 4A and B present the results of measuring the
dependence of the echo signal intensity variations on
the frequency offset for sequences (4) and (5).
4. Discussion

We would like to forward precede the discussion of
the obtained results with a few observations on the phys-
ical nature of K, L, and M–operators. According to pa-
per [10], the K—operators correspond to single quantum
transitions in two coupled fictitious spins-1/2. In as
much as the two coupled fictitious spins-1/2 create a
three level equidistant system, the K—operators describ-
ing such a system possess all the properties of normal
operators of a fictitious spin-1/2 Ip,i, which also describe
a three-level system. In their turn, L andM-operators
correspond to double quantum transitions between
two levels of energy using the third level as intermediate.

Let us consider average Hamiltonians obtained while
using different sequence cycles (4).

One can easily see that the influence of the offset ef-
fects and dipole interactions in a double-quantum LM-
space are described identically with the same operators.
It should be noted that the LM-space input into magne-
tisation is identical for both T 	

2 ’ T 2 (D � Xi) and
T 	

2 � T 2 (D � Xi) cases.
In a single-quantum K-space the situation is not so

simple. The peculiarity here is that the magnetisation
corresponding to K-space is ensured not by the dipole
Hamiltonian, but by the offset Hamiltonian reflecting
the distribution of resonance frequencies in the sample.
It should be noted that this result cannot be predicted on
the basis of a two-pulse sequence analysis. As follows
from expressions (20), the amplitude of the echo signal
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detected after two pulses does not depend on the rela-
tionship between the dipole and the offset Hamiltonians.

Here is one of the conclusions that can be made based
on our study. Though when determining the nature of
the observed signals it is necessary to take into account
dipole interactions, however under condition T 2 � T 	

2

for the case when flip angles of the pulses are close to
90�, one can get quite a correct phenomenological
description of the main peculiarities of the system
behaviour while taking into account just the offset
Hamiltonian.
5. Conclusion

Experimental study of sequences (4) and (5) presented
in this paper deals only with the case of comparatively
large pulse intervals 2s, as compared with the free induc-
tion decay time T 	

2. In this case one does not observe the
steady-state, its distinguishing feature being the possibil-
ity of obtaining a continuous signal chain (when select-
ing certain flip angles and frequency offset of the pulses)
at times > T1. However, when T 	

2 > 2s, the presented
above theoretical analysis is also applicable for the
description of the behaviour of the spin system in the
time interval T2 < t < T1 (quasistationary state).
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